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PRESSURE GRADTENT AND HEAT TRANSFER

By Morris Morduchow and Richard G. Grape
SUMMARY

A theoretical study is made of the effect of pressure gradient,
wall temperature, and Mach number on laminar boundary-layer character-
istics and, in particular, on the skin-friction and heat-transfer
coefficlents, on the separation point in an adverse pressure gradient,
on the wall temperature required for complete stebilization of the
laminar boundary layer, and on the minimum critical Reynolds number for
laminar stability. The Prandtl number is assumed to be unity and the
coefficient of viscosity is assumed to be proportional to the tempera-
ture, with a factor arising from the Sutherland relation. A simple and
accurate method of locating the separation polnt in a compressible flow
wlth heat transfer 1s developed. Numerical examplep to illustrate the
results 1n detall are given throughout.

INTRODUCTION

The purpose of the present investigation 1s to determine theoreti-
cally the nature of the leminar boundery layer in compressible flow with
heat, transfer and pressure gradient. In particular, the effect of
pressure gradient (favorsble and adverse), wall temperature, and Mach
number on the boundary-layer characteristics are investigated. Such an
investigation has already been made in reference 1 on the basis of
fourth-degree velocity and stagnation-enthalpy profiles, in conjunction
with two different boundary-layer thicknesses (a dynamical and a thermal
boundary-layer thickness). In contrast with the present study, the
effect of normal fluid injection at the wall was included in reference 1,
but the stability of the boundary layer was not lnvestigated therein.
The present investligation 1s based on the more accurate method of calcu-
lating boundary-~layer properties as developed In reference 2, where
sixth-degree velocity and seventh-degree stagnation-enthalpy profiles
are gpplied in conjunction with a single boundary-leyer thiclkness, with
the thermal boundary-layer thiclkness replaced by an additional param-
eter by 1n the stagnation-enthalpy profile.




2 NACA TN 3296

In the first section of this study, skin-friction and heat-transfer
characteristics are investigated, especially with respect to the effect
of wall temperature, pressure gradient, and Mach number. The analysis
is carried out first in general terms and then 1llustrated by a numeri-
cal example for the supersonic flow over a thin airfoil, for which the
pressure gradient is everywhere favorable (negative). In the next
gsectlon, a simple and ordinarily sufficiently accurate method of calcu-
lating the separation point in an edverse pressure gradient in subsonic
or supersonic flowl over a wall at a given uniform temperature is devel-
oped. The method, based on the speclal use of a seventh-degree profile
to satisfy an additional boundary condition at the separation point
(first suggested in ref. 3), is essentially an extension of the method
developed for zero heat transfer in reference 4, where a numerical
example indicated excellent agreement with exmct results. With this
method, the effect of wall temperature and Mach number on the separation
point is investigated. The results are then 1llustrated by a numerical
example for flow with a linearly decreasing velocity outside of the
boundary layer. A second example treats the conditions (involving the
wvall temperature) under which laminar separation will take place imme-
diately behlnd a stagnation flow abruptly followed by an adverse
pressure gradient.

In the final section, the stebility of the laminar boundaery layer
over & thin bilconvex airfoil in supersonic flow is investigated. For
this purpose, the wall temperature required for complete stabilization
of the flow (infinite minimum critical Reynolds number) is calculated
for several Mach numbers at different stations along the airfoil. TIn
addition, the minimum critical Reynolds number'lis determined at a given
station for various wall temperatures and Mach numbers. Comparison is
made with results for flow over a flat plate in order to demonstrate
the effect of a pressure graedient, in addition to that of wall temper-
ature, on the stability characteristics. The stability calculations
here are based on the well-known two-dimenslonal criteria developed by
Ieces and ILin (refs. 5 and 6) for campressible flow. Since the validity
of these criteria appears at present to be in doubt for high Mach
numbers (e.g., ref. T), the present calculations have been restricted
to Mach numbers not gbove 3. The present results on stability charac-
teristics in compressible flow wlith heat transfer and pressure gradient
may, In & sense, be considered as an extension of the results already
obtained for flow over a flat plate (zero pressure gradient) with heat
transfer (refs. 8 to 11) and for flow with a pressure gradient but with-
out heat trensfer at the wall (refs. 12 and 4).

The analysis in the present investigation is based on the assumption
of a uniform wall temperature, & Prandtl number of unity, and a linear

Ishock-wave interaction with the boundary layer, however, is not
consldered.
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temperature-viscosity relation (as in ref. 1). As in reference 2, how-
ever, a factor C (first suggested and applied in ref. 13) has been
introduced in the temperature~viscosity relstion to account, at least
at the wall, for the Sutherlend viscosity law. This factor, as will be
seen, has an Influence on the skin-friction and heat-transfer coeffi-
clents, although not on the separation point. One simple, but very
approximate, means of correcting the Nusselt numbers to be obtalned
here in cases of a Prandtl number different from unity would be to
multiply the Nusselt numbers for unit Prandtl number by & power of the
actual Prandtl number, this power being roughly equal to 1/3 (cf., e.g.
refs. 14 and 15).

This investigation was conducted at the Polytechnic TInstitute of
Brooklyn Aeronautical Ieboratories under the sponsorship and with the
financial asslstance of the Natioral Advisory Committee for Aeronautics.
The authors hereby express thelr thanks to Professors P. A. Libby and
M. Bloom for their helpful discussions and to Mr. Richard P. Shaw for
his aid in the calculations.

SYMBOIS

8o coefficlent of 72 in velocity profile; see also
equation (6)

8n constant average value of ap

ang value of ao at séparation point

by coefficient of T in stagnation-enthalpy profile

by constant average value of by

c factor in viscosity-temperature relation (eqs. (1)
and (2))

sz local sgkin-friction coefficient

p specific heat at constant pressure

Cy specific heat at constant volume

Fl constant, given by equation (8)

Fig constant used instead of F; in determining separation

point; see equation (2h)
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ratio of stagnation enthalpy at wall to stagnation
enthalpy at outer edge of boundary layer, Ho[ E;

for a Prandtl number of 1, G; is ratio of actual
wall temperature T, to equilibrium wall temper-
ature T, for zero heat transfer (see also eg. (13))

stagnation enthalpy, defined as quantity (u2/ 2) + cP'I‘
constants (see eqs. (28) and (29))

thermal conductivity

coefficients in veloclty distribution over thin airfoil
(egs. (17))

characteristic length; chord length for airfoil of
figure 1

Mach number N
Nusselt number

Reynolds number, u,L/ve,
Reynolds number, u:bL/vb

minimm critical Reynolds number, based on conditions
at point b immediately behind shock wave at leading

edge of airfoil in figure 1, (WL/Vp)cr

minimm critical Reynolds number, based on remote free-
stream conditions in supersonic flow over thin airfoil

of figure 1, (UxL/Vw)ep

proportional to ratio of local skin friction to local
Nusselt mumber (eq. (16))

constant in Sutherland viscosilty-temperature relation,
216° R for air

gbgolute temperature

equilibrium wall temperature for zero heat transfer;
for a Prandtl mmber of unlty, Te = Tw<1 + Z;—l-bzf‘)

variable defined by equation (3)
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X,y

By
1
A = Ro(B/I)2

Subscripts:

b

cr

fav

8,8€p

veloclity in x-direction

coordinates parallel and normal to surface,
respectively

ratio of specific heats, cp/ey, 1.4 for air

density
boundary-layer thickness in xt-plane

geometric slope of thin airfoil profile

coefficient of viscosity

kKnematic viscosity

dimensionless distance along wall, x/L
fig. 1)

dimensionless variable, <©/5y

constant defined by equation (8)

constent used instead of ¢ in determining separation
point (see eq. (24))

values at point outside of boundary layer immediastely
behind shock wave at leading edge of airfoll

critical
favorable pressure gradient
vaelues at wall

values at or used for determining separation point
(see eqs. (23) and (21))

locel velues et outer edge of boundary layer
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© values at suitaeble reference point outside of boundary
layer; for airfoil in supersonic flow, values in
undisturbed (remote) free stream

' differentiation with respect to §
BASTC EQUATIONS

The basic equations for the calculation of the laminar-boundary-
layer characteristics in compressible flow with an axial pressure
gradient over a wall at a uniform wall temperature T, have been
developed in reference 2 with the assumptions that the Prandtl number
is unity and that the coefficient of viscosity varies with temperature
according to the relation

B/t = C(T/T) (1)
where
C = (To/Te) Y3(Tm + 8)/(To + 8) (2)

These equations will be repeated here for convenient reference.
The variable + replaces the physical normal coordinate y according

to the relation

t
y= fo (T/Tq)db (3)

The velocity and stagnation-enthalpy profiles are given, respectively,
by

T = (or - 57 + 65 -276)+(3%)[-2~r+572 - 10 + 100 - 376 4
U 5

(%1_>(—T + 1070 - 20t + 1510 - h¢5ﬂ (1)

B IS (1 - Gl)(35'rlL - & 4 010 - 2007 ) &

bl(T - 20t + 4570 - 360 4 10r7) (5)
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where

= -(1/20) (7y/7) BN Dy pugen (1 + 52 mZp (9

and the dimensionless boundary-layer thickness A(t) in the xt-plane
can be calculated from the equation

[ g C g oy [0 020 ),

lI—/F]_ (7
(2/F1) [+1)] (r-1)] - (o0 /B
) ) I
Here F, and ¢ are constents defined as
F, = 0.1093 + 0.002118, - o.ooo622a:é+ o.bowle(ilae/el) - ]
0.0000095 (B8, /) -~ 0.000153 (‘5122_2 Gl)
- (8)

¢, = 0.3Gy + 0.00438 + 0.02328; - 0.0012kan? +

Bl[E).ogo5 + (52/30(}1) (0-0838 - o.ooh58§2)]

vhere & and by denote constant average values of as(g) and Dy(¢)
over the entire flow.

J

Equation (7) is a solution of the ordinary differential equation

(F1/2)A" + ?\{Fl(pl /pl (m /ul [‘Pl + Mla(q’l - Fl)]}
= 20 en) (%4/%) (/) ©

The coefficient by(t) is a function of a,(&) and is to be calculated

as the solution of a quedratic equation (eq. (68) of ref. 2) after A(£)
and thence 32(§) have been determined. It will usually be found that

an approximste value for by is

by =~ 2(1 - 61) (10)




8 NACA TN 3296

(Eq. (10) is exactly valid for flow over a flat plate,) The temperature
distribution Ty /T, and the Mach number M; at the local outer edge of

the boundary layer will be related to the velocity distribution ul/um(g)
there according to the relations .

/T, = 1 + [37 - l)/é]Mmz[g - (ulfum)é] (11)

M2 = (ay fu,)PM 2 (T /T, )t (12)

The wall-temperature ratio Eb/i; is related to the parameter G = TO/Te
by the relation

o - o+ 52 ) -

The local skin~friction and heat-transfer (Nusselt number) coeffi-
clents follow, respectively, from the equations

or, = S2La w1 - (s5) - (rate/m)] (EAR ) ()

1 %pwuwa
(14)

_ (WT/oy) L.
el L LY ST

SKIN-FRICTION AND HEAT-TRANSFER CHARACTERISTICS

From the foregoing equations, several general conclusions on the
effect of wall temperature, pressure gradient, and Mach number on the
skin-friction and Nusselt number can be derived.

General Tmpllcations

The effect of wall temperature on the skin-~-friction and heat-transfer
coefficients arises essentially from two different sources: (a) The
conditions of dynamic equilibrium, as defined mathematically by the basic
differential equations and their solutions, and (b) the variation of the
viscosity coefficient with temperature, as defined mathematically by the
constant C.
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With respect to (a), the effect of wall temperature will depend on
the nature (positive or negative, i.e., adverse or favorable) of the
pressure gradient. This follows from the fact that in the governing
momentum ordinery differential equation (eq. (9)) the quantity G;
appears primerily in a form multiplied by the velocity gradient uy'

in the flow outside of the boundary layer. Thisg is also the case in

the coefficient ap (eq. (6)). By bringing the u;' term in equa-

tion (9) to the right side and observing the expression for ¢ according
to equation (8), it cen be seen, in fact, that for uy' >0 (favorable

pressure gradient) (A/C)', and hence (A/C), will tend to be increased
by a decrease in the wall-temperature parameter Gl.2 This result, in

conjunction with equations (14), (15), (6), and (10), indicates that,
without the effect of C, lowering the wall temperature tends to diminish
the local Nusselt number and, especlally, the local skin friction in a
favorable pressure gradient and to increase the Nusselt number and,
especially, the skin friction in an adverse pressure gradient. This
conclusion is in accord with that also derived in reference 1. It must
be noted, however, that for a cooled wall, where Gy < 1, the foregoing
effect of wall temperature on a, due to a pressure gradient will
ordinarily be greater than that on A/C, since it will be found from
the general solutions (7) and (8) that A/C 1is then not very semsitive
to changes in Gj.

Fram equations (14), (15), and (7) it follows that both the skin
friction and Nusselt number will be proportional to ¢C. The effect of
wall temperature arising from the viscosity coefficlent and determined
by the constant C 18, contrary to the dynamical effect just discussed,
independent of the pressure gradient. From equation (2) it follows that,
if To/T, is diminished, then C and hence sz and Nu decrease

when To/T,< 8/T, (or T, < 216° R), while C and hence Cp, end Tu

increase when To/T, > S/T, (or T, > 216° R). The latter is expected

to be the case in practice. Thus, depending on the nature of the
pressure gradient and possibly on the magnitude of the wall temperature,
the dynamicel and viscosity effects of wall temperature may tend either
to magnify or partly to cancel each other, More specifically, unless

the wall is unusually cold, that is, unless Tgo< S, these effects will
tend to oppose each other in a favorable pressure gradient and to magnify
each other 1n an adverse pressure gradient.

aAccording to the equations developed here, this conclusion mey not
be quite valid in the immediste vicinity of a sharp leading edge where
the pressure-gradient effect is_relatively unimportant and the small
effect of wall temperature on Fy may actually predominate. (cf. table II
in conjunction with the numerical example discussed subsequently.) In

this vielnity, however, the dynamical effect of a uniform wall tempera-
ture will be found to be negligible.
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It is significant to note that, since the velocity graedient wu;'
appears in the equations (eqs. (6) and (9)) always multiplied by the
wall-temperature ratio G;, 1t can be inferred that a lowering of the
wall temperature has a tendency to diminish the direct effect of a given
pressure gradient, that is, the effect of uw;' as such, on the boundary-
dayer properties. A clear illustration of this will be seen subsequently
in the anelysis of leminar separation (cf. also ref. 1).7 It must be
observed, however, that the effect of a pressure gradient also appears
indirectly, namely, in the variation of uy/u, and Ty /T with €.

For Mach numbers sbove 1, in fact, the Tp/T, terms in A (eq. (7))
may become particularly important, so that in such a case the net effect
of the pressure gradient may actually be increased by a lowering of the
wall temperature. This will be clearly illustrated by the subsequent
numerical example.

Fram equations (14) and (15) it follows that the ratio of local skin-
friction coefficient to the local Nusselt number can be expressed as

c = (E2) (=), - ME f _b;_)] (16)
w /\ug by 5 126Gy

Equation (16) is valid along the entire flow. For flow over a flat plate
(zero pressure gradient: u/u, =1, a, =0), equation (16) implies

r = 2. For flow with a pressure gradient, however, this simple relation
is seen to be no longer valid. Since, ordinarily, (1 - G1)/by =~ 2,
equations (16) and (6) imply r > 2 along the flow in a favarable
pressure gradient (u3' > 0) and r< 2 in an adverse pressure gra-
dient (uy' < 0). Thus the ratio r <tends to be increased by a negative
(favorable) pressure gradient and decreased by a positive (adverse)
pressure gradient.* From equations (6) and (16) it is seen that, for a

SFurther illustrations of this conclusion can be found in numerical
examples of reference 16, which are based on & small-perturbation method.
YEquation (14) and hence equation (16) mey be inaccurate at, and
hence in the immediate vieclinlty of, the separation point in an adverse

pressure gradlent, since, according to the criterlon of separation
(eq. (20)) developed in the succeeding section "Location of Separation
Point," Cg, as given by equation (14) will not vanish exactly at the

separation point. This is due to the use of sixth- instead of seventh-
degree veloclty profiles here. However, equations (14) and (16) should,
for practical purposes, be adequate to yield the distribution of skin-
friction along the flow. When the primary interest is in the location
of the separation point, the method described in the section "Iocation
of Separation Point" should be used.
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given pressure gradient and Mach number, the lower the wall temperature
the closer will r he to its value for flow wilthout a pressure gradient.
This illustrates the diminution of the direct effect of a pressure gra-
dient by cooling of the wall.

From equation (7), as has already been noted, it will be found that
in the presence of a pressure gradient %/C may be appreciably affected
by the Mach number because of the values of Tp/T,(£). Consequently it
cen be inferred, in view of equations (14) end (15), that a pressure gra-
dient will in general tend to enhance the effect of Mach number on both
the heat~transfer end skin-friction coefficients. Since the values of
Tl/ﬂn(g) will depend on the distribution of the velocity ul/um(g)

along the flow (eq. (11)), this effect of Mech number will, in fact,
depend on the nature of the pressure gradient. For a favorable pressure
gradient, for example, one for which (with proper cholce of Uy)

u) /un > 1 and hence Tp/T,< 1, an increase of Mach number can be
expected to increase A/C and hence, according to equations (14) and
(15), to decrease both Nusselt number and the skin friction. The oppo-
site effect will tend to occur in an adverse pressure gradient.

It should be further noted that for & given ratio Gy of wall

temperature to equilibrium temperature a Mach number effect, independent
of the pressure gradient, also appears in the viscosity-temperature
factor C according to equations (2) and (13). If T, > S, then for a
fixed G7 an increase of Mach number M, will diminish C and hence
will tend, as far as C 1s concerned, to diminish both the skin-friction
and heat-transfer coefficients in proportion to VC. Thus, in a favor-
gble pressure gradient, the dynamical (i.e., Tl/ﬁw) and the viscosity
(i.e., C) effects of Mach number will tend to amplify each other, while
in an adverse pressure gredient they will tend to oppose each other.

It may be worth while to note here that, in view of the fact that
A, end hence B8, will ordinarily be only 1ittle affected by the wall
temperature, equation (3) implies that cooling of the wall will in
general tend to diminish the physical boundary-layer thickness. However,
for a glven value of G, the boundary-layer thickness will tend to
increase with Mach number.

Numerical Example

In order to illustrate the foregoing general conclusions the
boundery leyer in the supersonic flow over a thin biconvex clrcular-are
alrfoil of thickness ratio 0.04 (fig. 1) at zero angle of attack was
calculated by means of the equations given here.? For this case, the

2 b1(t), however, was calculated by means of equation (68) of refer-
ence 2 and not by the approximate equation (10) given here.
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veloclty dlstribution outside of the boundary leyer can be expressed
as (ref. 17) A

ul'/um =1 = kl'l] - k21]2

k = (Mu02 - 1)"1/ 2 [ (17)

Xy = m[%u (M2 - 2)2]

where 17 18 the slope of the airfoll at any polnt along its surface.
In equations (17), the subscript « refers specifically to the remote
free-gtream conditions.

/

It is 1n thls case convenient, especially for purposes of ccmpar-
ison with flow over a flat plate, to use the point (to be designated by
subscript b) immediately behind the shock wave at the leading edge as
the reference point.6 For this purpose, it may be noted that

wfon = (/%) /(%))

where uj/u, 1s glven by equations (17), while w, /U 18 obtained from

equations (17) by evaluating the slope 1 at the leading edge. 'The
free-stream Mach number M, can be expressed in terms of the Mach

nunber M, at point b by means of the relations
152 = 1,2 (/1) % (T T)

P . (18)
_ (y - 1) 2 U,
Tco/Tb—-]+—L-———Mb (1..__>

Since in equations (1) to (16) the subscript « refers to any suitable
reference point outside of the boundary layer and since in supersonic
flow 1t must refer, in these equatlions, to a point behind a leading-edge
shock wave, it will, for this example, be taken to denote the polnt b.
It will be assumed in this example thet S/T, = 0.416.7 It should be
noted that the pressure gradient here is entirely favorable (uj' > 0).

6In this menner, when comparlson is made with flow over a flat plate,
the effect of the pressure gradient over the airfoil will be retained,
but the effect of the leading-edge shock wave will be essentially eliminated.
TTn this exemple, therefore, the temperature B, outside of the
boundary layer immediately behind the leading-edge shock weve, insgtead of
the remote free-stream temperature T, is considered fixed, while the
Mach number M, behind the shock varies.
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Figures 2 and 3 show the distributlion of local Nusselt number and
gkin friction for this example, with M, = 1.5 and 3.0 and with

Gy = 0.3, 0.5, and 0.7. The results for a flat plate are also shown
for camparison. (For M, = 1.5, the value of &p was taken to be

8p = -1.620Gy, while, for M, = 3.0, the value &p = -1.550G; was used.)
Tebles I, IT, III, and IV give the calculated values of C, AC,
bl/Kl - Gl), and &5, respectively, for the various values of M, and

G1.- In accordance with the general conclusions developed here, it should

be expected that, for this exsmple of a favorable pressure gradient, the
dynemic effect of wall temperature (i.e., the effect of wall temperature
if C were fixed) should be such that lowering the wall temperature
diminishes both the Nusselt mumber and, especially, the skin friction.
However, since with the values assumed in this example T,/Tp > S/Tp in
all the cases, the viscosity (or C) effect of wall temperature will here
be opposed to the dynamical effect (cf. also tables I and IT). Figure 2
indicates that the Nusselt number here increases as the wgll temperature
is lowered for a given Mach number and hence that the effect of wall
temperature arising from the viscosity-temperature relation is the pre-
dominant effect here. For the skin friction, however, figure 3 indicates
that except near the leading edge (&' < 0.2) the dynamical effect of the
wall temperature is predominant for M, = 1.5, since here sz diminishes

as the wall is cooled. For M, = 3.0, on the other hand, where To/T,

is greater for a given value of Gy (cf. eq. (13)), so that the C-effect
becomes more important than for M, = 1.5, i1t is seen that the dynamical
or pressure-gradient effect of wall temperature predominates only slightly
and only after a considerable distance (&' > 0.6) downstream of the
leading edge.

Figure 3 indicates that, for M, = 1.5, lowering the wall tempera-
ture brings the skin-friction curves for the airfoil closer to those for
a flat plate. This illustrates the general conclusion previously reached
regerding the diminution of the direct effect of a pressure gradient by
a lowering of the wall temperature. However, for M, = 3.0, figure 3
indicates that the skin-friction curves for the airfolil will now be
further removed from those for a flat plate when the wall temperature is
lowered. This is essentially due, as previously intimated, to the
increased effect, at this higher Mach number, of the temperature distri-
bution T7/Tp(E)(<1) outside of the boundary layer along the airfoil,
which tends to increase %/C and hence diminish sz (as well as Tu)

in comparison with the value over a flat plate (where Tq/Tp = 1). The
direct effect of the pressure gradient given by the ap term in equa-

tion (14), however, is to increase the skin-frictlon coefficlent over
that for a flat plate, but at the higher Mach number this effect is not
so great as the indirect effect of the pressure gradient due to Tl/Tb(g).
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The decreese of local Nusselt number for both M =15 end
M, = 3.0 (fig. 2) and the decrease of the local skin-friction coeffi-
cient for M, = 3.0 (fig. 3) along the airfoil downstream of the
leading edge are due primarily to the decrease, in this region of nega-
tive pressure gradient? of the local temperature Tl outside of the
boundary layer (which increases A/C according to eq. (7)). This, in
fact, 1llustrates the enhanced effect of Mach number on the heat-
transfer and skin-friction coefflclents due to the pressure gradient.

Table IIT indicates that the values of by as calculated from
equations (67a) and (68) of reference 2 remain fairly close to the
value 2(1 ~ G7) (cf. eq. (10)), although in the present favorable
pressure gradient (ap < 0) they are everywhere less than or equal (at
the leading edge) to this value.

IOCATION OF SEPARATION POINT

In a reglon of adverse pressure gradient (negative ul') there is
a possiblility of laminar separation, which occurs where (Bu/By)o = 0.

A felrly accurate and simple method of calculating the separation point
in compressible flows with zero heat transfer was developed in refer-
ence 4 and was based in part on the use of an additional boundary con-
dition (first suggested in ref. 3) at the wall necessarlly satisfied at
the separatlion point by an exact solution of the partial differential
equations. For zero heat transfer, the separation polnt as a function
of Mach number calculated by this method was found to agree very well
with numerical solutions in reference 18. (See ref. 4 for details;
also, see table V.) In the present section this method will be general-
ized for any given uniform wall-temperature ratio Gy = To/Te- (For

zero heat transfer, as in ref. 4, G = 1.)
Method of Calculating Separation Point
By differentiating the momentum partial differential equation of
the laminar boundary layer, it can be shown (see the appendix), under

the present assumptions of a Prandtl number of 1 and a linear viscosity-
temperature relation, that at the separation point

(dhufort), = o (19)

with, as well as without, heat transfer at the wall.
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A seventh—degree8 velocity profile in T can now be chosen to
satisfy condition (19) in addition to the boundary conditions satisfied
by the sixth-degree profiles (eq. (4)) on which the preceding analysis
has been based. From this profile (cf. appendix) it follows that separa-
tion will occur where as(t) has the value (denoted by apg)

_ 3.5G1
G + (2/15)1,

8og (20)

Moreover, a5(§) 1s still given by equation (6). From equations (6)
and (20) it follows that the value Agep Of A at the separation point
will in general be

-(2-7)] (z-1)

(ul'/um)(l + Z—;——l M12) ¢ + (2/15)py

By inserting the approximate equation (10) for by into equation (21),9
it 1s found that

(Tl/l]'_lm)"(z'?')/(?"l)
(ul'/um) (1 + 2—-—5—; Mlz) 11G7 + b

Moreover, by applying the same type of analysis as described Iin refer-
ence 2 to the seventh-degree velocity profile, the following expression
for A(&) (denoted by Ag) can be derived (details are given in the

appendix) : ( /‘. ) [( )/( ):l .
3 2[F14) P g-1 2y-1 1) ] = (P g/ F1g
fo T N " (T T T (sl at

(22)

Ngep = 1050

A(E) = —— ¢

oF1 2[F16) 015 (7+1)/ (7-1) = (P15/Fos
(af uw)( i (T2/ % [ i )323)

8Tt should be noted that such a seventh-degree veloclity profile is
used here only for the purpose of determining the separation polnt and
that otherwise the sixth-degree velocity profiles of reference 2 (see
also eq. (4)) should be used.

9Mhe use of this approximate velue greatly simplifies the calcula-
tions without appreciably affecting the accuracy. This is due to the
fact that equation (10) should ordinsrily be a fairly good approximation
for by (cf., e.g., table ITI), while, except in cases of extreme
cooling (G1 close to zero), the by term in equation (20) will be
relatively small.
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where Fis and @, are constants given by

N

g = 0.1159 + 0.00252585, - 0.00145ka, 2 - 0.0000572(byapg /G1)2 -
0.000574(brang2/6; ) + 0.000887(by2g /1)

Pl = 0.25G; + 0.043T + 0.0738b; + 0.0348ay, - 0.00291ap > + |
0.00773 (by2pg /61 ) - 0.001147 (byaps?/Gy ) - 0.0001145 (byagg /Gl)QJ

(24)

and by and ap, are simple functions of Gy according to equa~
tions (10) and (20). The constants ¥,, and @y are functions of
Gy and are shown in figure 4.

For any given reference Mach mumber M and uniform wall-temperature
ratio Gy, the separation point in a region of given adverse pressure
gradient, as specified by ul/uw(g), will be the station €& at which the
right sides of equations (22) and (23) are equal. Thus, it is necesseary,
in general, only to plot A versus &, in the anticipated vicinity of
separation, in accordance with both equations (22) and (23), and to
determine the point of intersection of these two curves. The separation
point will evidently be independent of C, so that for the purpose of
determining the seperation point one may set € = 1. In the case of a
region of favoraeble pressure gradient starting at the leading edge
followed by a reglon of unfavarable pressure gradient, equation (23)
should be modified to equation (A9) of the appendix, based on the
assumption that A 1is continuous at the polnt of discontinuity of the
velocity gradient uy'.

General Implications

With respect to the effect of wall temperature on the separation
point, it should be noted, first of all, that, as remarked in the pre-
ceding paragraph, the value of the temperature-viscosity factor C has
no influence on the separation point. Thus, the temperature-viscosity
relation, as it is incorporated in C, does not have the signifilcant
effect on the separatior point that it has on the skin-friction and
heat-transfer coefficients. The effect of wall temperature on the
separation point will thus arise only from its dynamical, or pressure-
gradient, effect (cf. the section "Skin-Friction and Heat-Transfer
Cheracteristics™).
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For a fixed velocity distribution uljum(g) outside of the boundary
leyer and a fixed Mach number M_, the equations developed here will
imply that diminishing the wall temperature, that is, diminishing Gj,
will have a favorasble effect on separation by moving the separation polnt
downstream. This cen be seen particularly from equation (22), according
to which the required value of A for seperation (%sep) will increase

as Gy 1is diminished. This delay of separation caused by cooling of

the wall is an 1llustration of the general tendency, discussed previously,
of a decrease in wall temperature to diminish the direct influence of a
pressure gradient (in the present case, an adverse pressure gradient).

The effect of Mach number on the separation point for a fixed value
of uljuw(g) and either a fixed value of Gy or a fixed value of
To/Tm cannot be predicted quite so readlly from the equations as the
foregoing effect of wall temperature. Mach number effects are contailned
in the Ty/T, terms in equations (22) end (23), as well as in the My
term of equation (22). These terms tend to cause a decrease in both
)Bep and Ay with increase in Mach number. For a fixed value of G,

that is, a fixed ratlo of actual wall temperature to equilibrium well
temperature for an insulsted wall, numerical examples for the case

u /u, =1 -~ £ have indicated that the effect of Mach number on the
required value of A, that is, )Bep (rather than on Ag), is the pre-
dominant effect, so that under such conditions an increase in Mach
number moves the separation polnt forward and thus enhances separation.

A well-known case in this respect 1s that of zero heat transfer, where
Gy =1 (e.g., refs. 4 and 18), However, according to additional results

for the case u.]_/u°° =1 - £, lowering the fixed value of G; ‘tends to
diminish somewhat this edverse effect of Mach number (ref. 1).

If, instead of considering the ratio G; as fixed, the ratio T,/T,
of well temperature to the reference, or free-stream, temperature is held
fixed, then the effect of Mach number on the separation point for a given
veloclity distribution ul/uw(g) is altered. This is due to the fact
that, if T,/T, 1s fixed, then, as seen fram equation (13), Gy varles
with Mach number, and, in particular, G; decreases as M, I1ncreases.
This effect has a tendency, according to equation (22), to increase the
value of A required for separation as M, 1is increased. This, in
turn, tends to move the separation point downstream, and the numerical
example to be subsequently glven here indicates that the net effect, at
least in the case wuj/u, = 1 -~ §, of increasing the Mach number M, as
the wall-temperature ratio To/mw is fixed is to delsy separation. This

is hence in contrast with the results obtained for fixed values of Gy,
that is, fixed values of Tq/Te-
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Numerical Example

To illustrate quantitatively the application of the equations
developed here, as well as the foregoing conclusions, a numerical
example based on the case

ufue =1 -E (25)

will now be glven in detall. Eq}lz_a‘bion (25) represents the simplest type
of an adverse pressure gradient.

First, the effect of wall temperature on the separation point for
a fixed Mech number will be calculated. For this purpose, 1t will be
assumed for simplicity that M, = 0 (so that T]ij = 1) while the
parameter G (G = To/Tw if M, = 0) varies. In this case, equating
the right sides of equations (22) and (23) leads to the following simple
expression for the location of the separation point as & function of the
wall temperature (& = gsep):
" (l e >( e/on) (26)

Ssep 116, + b

where @y, and F,  are given in terms of G; by equations (24), (10),

and (20) or by figure 4. A result qualitatively similar to equation (26)
was obtained by the use of fourth-degree profiles in reference 1, but
because of the present use of a seventh-degree veloclty profile the
results based on equation (26) are considerably more accurate qusntita-
tively. The separation point according to equation (26) is plotted in
figure 5 for a range of values of TO/TG° from 0.3 to 2.0, and the effect

of cooling of the wall in delaying separation can be clearly seen here.

In order to determine the effect of Mach number for a glven ratio
of wall temperature to free-stream temperature TO/TQ, the separation

point has been calculated for a range of Mach numbers M, <from O to 5.31
with a fixed value of T,/T,, namely, T,/T, = 2. The values of Gy,
therefore, range from @G = 2 (for M, = 0, wall heated) to G = 0.3
(for M, = 5.31, wall cooled). The calculations can be performed by
observing thet by virtue of equations (11) and (12) equation (22) with

¥y = 1.4 can be written as

10T w3 /u, = 1 - kt, where k is a positive constant, then, as

shown in, for exsmple, reference 4, the results based on equation (?.5)
remain valid, with €& replaced by ki and A replaced by KkA.
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Agep = -105C (T2/Te) -2 (27)
[+ 13(To/m) + 0.80.5] (g /)

Equation (27) is in a form convenient for calculations involving a fixed
velue of To/T,. For each specified Mach number M,, Ngep 88 &

function of & can thus be readily calculated, while Ag(t) can be cal-
culated from equations (23) and (24) (or fig. 4) by numerical integration.
The value of & at which Ay = )sep is then the separation point. The
results of such a calculation for the case denoted by equation (25) are
shovn in figure 6. For comparison, the separation point versus Mach
number for zero heat transfer is also included in the figure. The
results clearly indicate the favorable effect of Mach number (for the
fixed velocity distribution of equation (25)) on the separation point

for the fixed value of To/ﬂm, in contrast with the unfavorable effect

of Mach number at zero heat transfer (when Gy 1s fixed at unity and
hence T,/T, increases with Mach number: cf. eq. (13)).

Stagnation Flow Followed by Adverse Pressure Gradient

It has already been indicated how the separation point can, in
general, be calculated in cases of a favorable pressure gradient followed
by an adverse pressure gradient. It may be of 1nterest in this connee-
tion to investigate the following question: Under what conditions will
the boundery layer in the favorable-gradient region develop to a suffi-
cilent extent so that laminar separation will occur almost immediately at
the polnt where the unfavorable gradient starts? In particular, to what
extent does the wall temperature affect such condltlons? From a practi-
cal point of view, this question appears equivalent to the question of
when the flow will separate at the point of minimum pressure outside of
the boundary layer. It is well known that, at least in incompressible
flow without heat transfer, laminar flow usuelly tends to separate
shortly downstream of such a point if the pressure gradient is contin-
uous. In case the favoreble pressure gradient can be represented by a

stagnation flow, that is, by a flow outside of the boundary layer of the
form

u/u, = Kp8 (28)
vhere K; 1s a positive constant, and the Mach numbers in this region
are sufficiently low so that thelr effect in this region can be neg-

lected, 1t will be seen that the foregoing questions can be answered
in a particularly simple and fairly interesting manner.

~t
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Iet the subscript « now denote the point where the adverse
pressure gradient starts (here presumed abruptly, that is, discontinu-
ouslyll) after the favorable pressure gradient, and let X, be pro-

portional to the magnitude of the negative veloclty gradient in the
adverse-pressure-gradient reglon at this point, that is,

Kp = (32" /O gog | (29)

Then, according to equation (22), separation will, in general, occur
immediately at this point if A (denoted here as Apay) &t this point
as calculated from the flow in the favorable pressure gradient satisfiles
the relationl?®

10 1 (30)

R =T e

If, in particular, the region of favorable preésure gradient is a stag-
nation flow characterized by equation (28), then, epplying the results
of reference 19 and identifying A with the quantity K2 there,

May = T(G1) /Ky (31)

where f(Gy) 1s a function of Gy which can be found elther from

figure 1 of reference 16 or by solving the algebraic equations (30) and
(31) there.l> sSubstitution for Npgy into relation (30) yields the

following condition for immediate separation after the stagnation-flow
reglon:

X F(G1) .
K 2 . (7—5—)};02 (32)

Umig is, of course, an 1dealization, since 1n actuallty the
pressure gradient will not be discontinuous. However, this 1dealiza-
tion might also be regerded as an approximation for a repidly cheanging
pressure gradlent and serves to furnish at least & qualitative answer
to the foregoing questions.

1274 is permitted to put C = 1 here since it has already been
seen that C does not affect the location of the separation point.

5 £(G1) is essentially Klg for @ =0 1in reference 19. The
quantity h there is equivalent to the quantity Gy here.
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where

= 100 33)
F(G) (11G; + &)f£(Gq) : (

In figure 7 F(G1) 1is plotted against G; for Gy = O to 1. As seen
from figure 7, F(Gy) varies from 2.40 to 1.00 in this range and
increases as Gy diminishes, that is, as the wall is cooled.

From relation (32) it is seen that the condition, in the present
case, for separation at the immediate start of the adverse pressure gra-
dient depends in & simple manner on the magnitude of the ratio of the
adverse velocity gradient Ko +to the favorable velocity gradient Kj.
Cooling of the well is seen, once again, to have a tendency to prevent
separation, since 1t increases the minimum required value of Kp/Kj.

The Mach number at the begipning of the adverse—giessure—gradient reglion
is, however, seen to have an unfavorable effect.

STABILITY CHARACTERTISTICS

It is of interest to investigate the effect of wall temperature,
Mach number, and pressure gradlent on the stability characteristics of
the laminar boundary layer. For this purpose, two types of calculatioms
will be made for the supersonic flow over the thin airfoil (fig. 1) on
which the numerical example in the section "Skin-Friction and Heat-
Transfer Characteristics" was based. First, the wall temperature
required to stabilize the laminar boundary layer completely, that is,
for infinite minimum criticel Reynolds number, will be calculated at
two given stations along the flow for various Mach numbers. Second,
the minimum critical Reynolds number at a given station will be ecalcu-
lated as a function of the wall temperature.

The method of calculatior is based on the stability criteria devel-
oped by Iin and Iees (refs. 5 and 6) with certain modifications pre-
sented in an unpublished paper entitled "Calculation of Stability of
Constant-Pressure Boundary Iayers on Isothermal Surfaces With an Integral-

Method Mean-Flow Solution" by Martin Bloom.l® Explicit details on the
method of calculation can also be found in reference 4. The stability
criteris as developed by Lin and ILees are based on the emplification or
decay of small disturbances, and the minimum critical Reynolds number
thereby obtained is the minimum Reynolds number required for the

lllBecause of the neglectlon of Mach number effects in the stagnation-

flow region, equations (32) and (33) may not be quantitatively valid for
high values of M.

15See also references 9 to 11.
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possibility that at least certain types (depending on the wave lengths)
of disturbances will be amplified. Thus, the existence of a Reynolds
number exceeding the minimum criticael Reynolds number is a necessary
condition for instablility of the laminar boundary layer. However,
transition to turbulence, which appears to depend on the magnitude of
the amplified disturbances, will usually occur at a higher Reynolds
number and hence at a point downstreem of the point where the actuel
Reynolds number is equal to the minimum critical Reynolds number. Never-
theless, 1t can probably be qualitatively concluded that the higher the
minjmmm critical Reynolds number, the more steble the flow and the less
the tendency for transition. (Further details on such questions can be
found in references 5, 6, and 20,) -

Figure 8 shows the well-temperature ratio To/Ty, end figure 9, the
ratlo To/Ty versus the Mach number M, required for camplete stabili-

zation of the flow at two different statlions along the airfoll of fig-
ure 1. The results for a flat plate (zero pressure gradient) are also
included for comparison. Figure 9 clearly indicates, from one viewpoint,
the stablilizing influence of the negative pressure gradient here, since
the required maximum values of To/Ty for infinite minlmm critical
Reynolds number are greater for the airfoil than for the flat plate;
hence, less cooling, relative to the local temperature T; outside of
the boundary layer, would be required for the airfoil than for the plate.
Figure 9 also indicates that at the hlgher Mach numbers the stabilizing
effect of the favorable pressure gradient appears to be relatively '
dimindshed.16

These results on the effect of the pressure gradient are qualita- .
tively in accordance with the conclusions of reference 12 (based on zero
heat transfer). For the special case of My = 1, it may be observed,

in this connection, that, although infinite cooling (Ty = O) would be

required to stabilize the boundary layer over a flat plate campletely,
only a finite degree of cooling (To > O) would suffice to stabilize the

flow over the present airfolil. This is due to the fact that the local
Mach number increases along the flow over the ailrfoil, so that when
Mp = 1 +the local Mach number M} will exceed unity at the stations

along the airfoll downstream of the leading edge.

It is significant to note that the curves for the required maximum
values of To/Tp (fig. 8) for the airfoil and for the flat plate cross

one another at certain Mach numbers M,. This indicates that, for a
Tixed reference temperature T, outside of the boundary layer immedi-
ately behind the shock wave at the leading edge, there are Mach

16This might be due physically, at leest in part, to the fact that
for the highetr Mach numbers M, the magnitudes of the favorable-velocity-

gradient retio uj'/w, according to equations (17) and (18) as well as
of the pressure-gradient parameter ao (table IV) are decreased.
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numbers M, (for example, M, 2 2.3 at E' = 0.8) for which a lower
(uniform) wall temperature would be required on the airfoil than on the
flat plate to stablilize the flow completely. This seemingly paradoxical
result (in view of the favorable effect of the negative pressure gradient
described in the preceding paragraph) is due to the fact that the local
temperature T outside of the boundsry layer over the airfoil diminishes
along the flow and is therefore less than T, particularly for the higher

Mach numbers (cf. eq. (11), with subscript « replaced by b). Thus,

from the viewpoint of complete stabllization, the net effect of the nega-
tive pressure gradient at higher Mach numbers is unfavorable wilth respect
to the required temperature ratios To/Tb but favoreble wlth respect to

the required temperature ratios TO/Tl, in the sense of figures 8 and 9.

Figure 10 and teble VI show the minimum critical Reynolds number Rb,cr

for the boundary lsyer at a glven station along the alrfoll and at two
different Mach numbers for both verlous wall-reference temperature

ratios To/T, and various wall-equilibrium temperature ratios G;. The
stebllizing effect of cooling of the wall 1s clearly indicated here, since
the minimum criticel Reynolds number is seen to increase as the wall-
temperature ratios are diminished. Moreover, by comparison with the results
for flow over a fiat plate, the stabilizing effect of the negative pressure
gradient (by increasing the minimm critical Reynolds number) is also seen
in figure 10. The destabillizing influence of a positive pressure gradient
is, for zero heat transfer, illustrated by an example in reference k.

It is interesting to observe the effect of Mach number on the sta-
bility of the laminar boundary layer. From figure 10, it 1s seen that
for a fixed ratio Gy of wall temperature to equilibrium temperature
an increase of Mach number from 1.5 to 2.0 destebilizes the boundary layer
both over a flaet plate and over the airfoil. This effect, for the limited
Mach number range considered, is seen, in fact, to be enhanced by the
negative pressure gradient here. If, now, Instead of a fixed value of
G1, & fixed ratio of wall temperature to reference temperature T,/Ty 18
considered, the effect of Mach number, for the limited range under con-
slderation, is changed. For flow without a pressure gradient, an
increase of Mach number is now seen from figure 10 to have a stabilizing
effect, especially at the lower wall temperatures. For the flow over the
airfoil, however, figure 10 (cf. also teble VI(a)) now indicates that an
increase of Mach muber has a stabilizing effect only at wall temperatures
close to the critical wall temperature (i.e., for infinite minimum criti-
cal Reynolds number) and that for (fixed) higher wall-temperature ratios
of To/T, en increase of Mach number has a clear destabilizing effect,
similar to the case of fixed values of Gy. Thus, for the low Mach number
range treated here, the negative pressure gradient over the airfoil con-
sldered here modifies the effect of Mach number on laminar stability for
a fixed ratio of wall temperature to reference free-stream temperature.
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The critical Reynolds numbers in figure 10 are based on conditions
Immediately behind the leading-edge shock wave on the airfoil. By
comparing these Reynolds numbers with those for a flat plate (uy/u, = 1),
the effect of the actual shock-wave on the stability of the boundary
layer is essentially eliminated, so that only the effect of the velocity
(ar, equivalently, pressure) gradient up'/w, (in addition to the effect
of wall temperature) is included here. Fram a practical viewpoint, it
may also be of interest to determine the effect on boundary-lsyer sta-
bility as the flight speed of the supersonic airfoil is increased. TFor
this purpose, the minimum critical free-stream Reynolds number Rm,cr
versus the free-stream Mach number M, has been calculated, and the
results are shown in figure 11 and table VI. The results are seen to be
quite similar to those based on conditions immediately behind the leading-
edge shock wave In the airfoil.

CONCLUSIONS

Under the assumptions of a Prandtl number of 1 and a linear viscosity-
temperature relation in conjunction with Sutherland's equation, the
following conclusions can be stated from the present investigation of the
compressible boundary leyer in a pressure gradient over a surface at a
given uniform wall temperature. (Interaction between the boundary layer
and the external streem has not been considered.)

1. The effect of wall temperature on the skin-friction and heat-
transfer coefficients arises from the pressure gradient and (independently
of the pressure gradient) from the factor C in the viscosity-temperature
relation. (C = (To/Thgl/e(Tm + 8)/(T, + S) where To is the temperature
at the wall, T, 1s the temperature at a point outside the boundary layer,
and S 1is the Sutherland constant.) In regard to the pressure-gradient
effect, cooling of the wall tends to diminish the Nusselt number and,
especially, the skin friction in a favorable (negetive) pressure gradient
and to increase the coefficients in an adverse (positive) pressure gra-
dient. In regard to the temperature-viscosity effect, lowering the wall-
temperature ratio To/T, Wwill ordinarily tend to increase both the skin
friction and Nusselt number.

2. Cooling of the wall tends, in general, to diminish the direct
effect of a pressure gradlent. A particularly clear example of this is
the delsy of separation in en adverse pressure gradient by cooling of
the wall.

3. A simple and ordinarily sufficiently accurate method of deter-
mining the separation point in a given subsonic or supersonic adverse
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presgsure gradient over a wall at any specified uniform wall temperature
has been developed here.

4. The results of a numerical example for a fixed linearly decreasing
velocity outside of the boundary layer indicate, in addition to the
delsying of separation by cooling of the wall, that, for a fixed ratio Gy
of wall temperature to equilibrium adisbatic wall temperature, an increase
of free-stream Mach number moves the separation point upstream; while,
for a fixed ratio Tg/T, of wall temperature to free-stream temperature,
an increase of Mach number has, in general, a less unfavorable effect and
in this case actually moves the separation point downstrean.

5. Numerical examples for the supersonic flow over a thin airfoll
indicate in detail the stabilizing nature of a negative pressure gradient
and of coollng of the wall on the laminar boundary layer. The examples
also indicate that the pressure gradient here modifies the effect of Mach
nunber on laminar stability for a fixed ratio of wall temperature to
reference free-stream temperature.

Polytechnic Imstitute of Brooklyn,
Brooklyn, N. Y., April 7, 1954.
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APPENDTX
_ DETERMINATION OF SEPARATION POINT

When the assumptions that the Prandtl number is 1 and that the
coefficlent of viscosity is proportional to the gbsolute temperature
(eq. (1)) are made, differentiation of the momentum partial differential
equation with respect to t yields the following relation at the wall
(cf. eq. (25) of ref. 2), where u=v = O:

Pu) _1_(.22.'13. 3_211.> (a1)
BtE)o T0 at ata o

Moreover, the energy partial differentiasl equation and differentiaetion
of this equation with respect to + yleld the following relations for
a uniform wall temperature (cf. egs. (26) and (27) of ref. 2):

(4%8/0t%), = o
(Puhe), = o (42
where
E = (u¥/2) + o7 (83)
From equations (A2) and (A3) it follows that at the separation
point, that is, where
(du/at), = O (Ak)

the relation
(afﬁy%ta)o =0 (85)

holds. Differentiating the momentum partial differential equation twice
with respect to t and taking values at the separation polnt, it is
found, with the use of equatioms (Al) to (A5), that

(3*afott), = o (46)

which is in accord with equation (19) of the main text.
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The seventh-degree velocity profile in T satisfying condition (A6)
in addition to the boundary conditions (viz., eqs. (22) to (28) of ref. 2)
satisfied in the present analysis by the sixth-degree profiles is

Lo (B3 a3

376 - 77) + a5(-%¢ + 1 - 370 4+ %?¢6 - T7)~ (A7)
where a, 1is given by equation (6), while

05 = (svr) 50 o

The condition (Ju/dt), = O will, according to equations (A7) and (AS8),
lead to equation (20) of the main text.

By inserting the profile (A7), in conjunction with equation (A8),
into the momentum integral-differential equatiom (ll) of reference 2
and assuming, as in reference 2, that the 8o and by terms in Fy

and Fp (defined in ref. 2) may be replaced by constant values, an

ordinery differentlal equation of the same form as equation (9) of the
main text is obtained, except that F; and @, (now written as Fyg
and @p5) are now given by equations (24) of the main text, while the
factor 2 on the right side of equation (9) is replaced by 7/4. Com-
parison, accordingly, with the solution of equation (9) (eq. (7)), leads
to equation (23) of the main text. Since the chief purpose is here the
location of the separation point, the constant value of an (as in

ref. 4) 1s now chosen as that at the separation point and hence as that
glven by equation (20) of the main text.

In case the reglon of adverse pressure gradient starts at some
point & = E; downstream of the leading edge, then equation (23) can
still be applied directly in calculating the separation point. Greater
accuracy, however, might be obtained in such a case by applying equa-
tion (23) only for the region of adverse pressure gradient. For this
purpose, equation (23) must be modified to satisfy the boundery condi-
tion A=23, at ¢ = ga. Thus,

2y-1 P15
: ?,;2; P11 %I'
(I)§=§a N + % C\jp (u1/u) ©(T1/Tw)
g = e (a9)

I

5 g
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where

2 ¥ Pag
-1 _Fls

= (um/u)'® (Ty/T.)

and where )‘a can be obtained as the value of A at £ =ty based on
equation (7) for the region (0% &< tg) Of favorsble pressure gradient.
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TABIE I

VALUES OF TEMPERATURE-VISCOSITY FACTOR C

VERSUS

MACH NUMBER AND WALL-TEMPERATURE RATIO

My, 1.5 3.0.
Gy | 0.3 0.5 0.7 0.3 0.5 0.7
C 1.097 | 1.057 | 0.997 | 1.033 | 0.923 | 0.834
TABIE IT
VAIUES OF A/C AIONG ATRFOIL OF FIGURE 1
NMC at M, of -
g! 1.5 3.0
Gp = 0.3 (G =0.5[Gy =0.7T|CG =0.3]|Gy =0.5][G =0.7
0 0 0 0 ¢] 0 0
.1 3.7 3.7h 3.76 3.92 3.94 3.95
.2 7.49 7.49 7.51 8.27 8.28 8.28
31 11.32 11.28 11.26 13.07 13.03 13.01
A 15.22 15.11 15.02 18.34 18.24 18.14
51 19.23 19.01 18.8% ok.12 23.91 23.70
.6 23.35 23.01 22.72 30.41 30.08 29.71
7| 27.56 27.09 26.67 37.29 36.73 36.18
.81 31.86 31.22 30.67 .50 43,70 43.00
.9 | 36.41 35.56 2 .82 52.30 51.29 50.32
1.0 | k1.01 39.95 39.01 60.49 59.18 57.90
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TABLE ITI
VALUES OF by /(1 - G;) ALONG ATRFOIL OF FIGURE 1
bi/(1-¢) st M, of -
E! 1.5 3.0
G =0.3|{G =0.5[G =0.7|G_ =0.3|Gy =0.5|Gy =0.7
0 2.000 2.000 2.000 2.000 2.000 2.000
1 1.978 1.975 1.969 1.980 1.976 1.97h
.2 1.959 1.953 1.945 1.963 1.958 1.949
> 1.94h 1.935 1.927 1.947 1.939 1.929
A 1.932 1.921 1.910 1.935 1.924 1.913
.5 1.92% 1.910 1.897 1.924 1.913 1.900
.6 1.914 1.901 1.889 1.916 1.904 1.900
T 1.908 1.895 1.882 1.910 1.898 1.883
.8 1.904 1.890 1.879 1.905 1.894 1.879
.9 1.901 1.887 1.877 1.902 1.891 1.879
1.0 1.898 1.886 1..876 1.900 1.890 1.876
TABIE IV
VAIUES OF -ap AIONG ATRFOIL OF FIGURE 1
-ap at M, of -
E! 1.5 3.0
Gp =0.3 |Gy =0.5{G] =0.7T|G =0.3 [Gy =0.5[Gy = 0.7
o} 0 0 0 0 0 0
.1 L1205 .2017 .2840 L1077 .1802 .2536
.2 .2315 .3859 5Lk .2128 .3548 L9712
31 3351 5567 STTT7 3141 .5219 - 7296
L 4309 .T130 .9920 L4113 .6816 .94g92
.5 .5202 85Tk 1.1890 .5029 .8306 1.1527
.6 .60 .9928 1.3721 .5881 .9696 1.3408
.7 .6798 | 1.11h0 | 1.5355 L6669 | 1.0949 | 1.5098
.8 .7513 1.2271 1.6877 .T331 1.2002 1.6531
.9 8175 1.3305 1.8239 . 7899 1.2911 1.7730
1.0 876k 1.4231 1.945h .8391 1.3565 1.8579
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TABIE V
SEPARATION POINT CATCUIATED AS A FUNCTION OF

MACH NUMBER FOR ZERO HEAT TRANSFER

(Gp = 1) ATD wpfu, =1-¢

gsep for M, of -
0 1 3 10
Based on egs. (22) to (24) | 0.122 | 0.113 | 0.0768 | 0.023
Based on method of
Stewartson (ref. 15) 0.120 | 0.110 | 0.077 0.024
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MINIMUM CRITICAL REYNOIDS NUMBERS OF LAMINAR

BOUNDARY IAYER OVER ATRFOIL IN FIGURE 1

AND OVER A FIAT PIATE

(a) Over airfoil (&' = 0.8)

Mb Mao G'l TO/Tb TO/Tco B'b,cr Roo,cr
1.5|1.662|1.1 |1.595 |1.708| 2.69 x 10*| 2.59 x 10*
| 1.0 1.150 | 1.553 6.58 6.34
.93 | 1.348 | 1.44% | 48.6 46.86
.91 | 1.320 | 1.413 | 128.6 124.0
.90 | 1.305 | 1.397 | 261.3 251.9
.8881] 1.288 | 1.379 © ©
2.0(2.18: | 1.0 1.8 1.9% 0.217 0.201
.9 1.62 | 1.7k .389 .362
.8 1.4 | 1.55 1.777 1.653
77 | 1.386 ] 1.49 L. .4h8 k.137
BT 1327 143 ® o
(b) Over flat plate
Mb=Moc Gl TO/Tb l]'10/‘:['00 R'b,cr Ruo,cr
1.5 |1.2 1.7%0 [1.740| 0.080% x 10% | 0.080% x 10*
1.0 1.450 | 1.450 .282 .282
.95 1.378 | 1.378 426 426
.90 1.305 | 1.305 Le41 641
.15 1.088 | 1.088| 16.68 16.68
.T2 1.04h [ 1.044 | 322.2 322.2
.T166 | 1.039 | 1.039 I o
2.0 1.00 1.8 1.8 0.0506 0.0506
.90 1.62 |[1.62 . 0903 .0903
.75 1.35 | 1.35 481 481
.70 1.26 |1.26 1.648 1.648
.683% | 1.229 | 1.229 P o
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